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Abstract

Secret sharing scheme is a way to share a secret with ‘n’ participants and then

a setup is made for predetermined t ≤ n or more number of participants who

must contribute to reveal the secret. In secret sharing schemes ‘t’ is known as a

threshold which must be achieved for secret reconstruction. In this thesis, a secret

sharing scheme with general access structure based on elliptic curve and pairing is

analyzed. Elliptic curve makes secret sharing more secure with less computational

complexity. Bilinear pairing is used in the reconstruction phase of the secret

for verifying the shares delivered by the participants. It has been observed that

Sreekumar and Binu’s scheme [2] does not provide security to shares when they are

delivered for reconstructing the secret. Participants have to deliver their shares

to combiner via a secure channel. Participants can not verify combiner and hence

increases the chance of being attacked. Also, the reconstructed secret can not be

verified by the participants. We have used the idea of public key cryptography

in the reconstruction phase through which participants can authenticate combiner

and avoid being attacked by an attacker. This also addresses the problem of using

a secure channel. Moreover, the idea of hash function is used for verification of the

reconstructed secret to avoid being deceived by a dishonest combiner. The revised

scheme is more secure as compared to [2] and addresses the weak security points

highlighted in the analysis.
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Chapter 1

Introduction

The meaning of the word cryptography is to communicate securely. It is one of the

two branches of cryptology [30]. To achieve the desired security extent, there have

been different algorithms introduced over the years. There exist many cases in

the literature where secret communication was required, for example, in military,

diplomatic service, government in general. But its main use desperately came

into consideration to protect the information in digital form when people started

communicating over a network. It allowed people to communicate with each other

in a secure way even in the presence of an adversary, without compromising the

security of their information or message (usually in hidden or encrypted form).

But, then the second branch of cryptology known as cryptanalysis which works

to break or check the security strength of cryptographic system in order to obtain

some information or original message from the encrypted message. Cryptanalysis

is also important for analyzing the security of a cryptosystem. There are many

attacks available in the literature on cryptographic systems for example brute-force

attack. In this attack, the attacker tries every possible key to break the system.

We will see different types of attacks on cryptosystems in Chapter 2 of this thesis.

There are many cryptographic techniques presented to secure the data but when

found weak are replaced by some other improved technique.

Next, we will discuss some techniques which are available in the literature and

have been useful for many years. The most worldwide well-known cryptographic

1
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mechanism in literature is DES (Data Encryption Standard) [15], published in

1977. It is a block cipher in which data undergoes 16 stages. It was used for a

long time but then found insecure and replaced by AES (Advanced Encryption

Standard) [36]. AES was considered as a more secure algorithm than DES. It has

three different number of rounds in which information undergoes depending on

the key size. Data is encrypted in blocks and in each round, message block goes

through four different layers. So far, the schemes that have been mentioned use

same key for data encryption and decryption.

Basically, there are two types of cryptographic methods based on keys used in

them.

1. Symmetric key cryptosysytems

2. Asymmetric key cryptosysytems

In symmetric key cryptosystems, both parties (sender and receiver) agree to use

the same key for encryption and decryption. The main disadvantage of symmet-

ric key cryptosystems is that the sender after encryption has to share the secret

key with the receiver which then enables them to decrypt the message. It some-

times compromises the security of the system. To overcome this problem, a new

technique known as asymmetric key cryptosystem [5] was proposed in 1976 by

Whitfield Diffie and Martin Hellman. It uses two different keys, one for encryp-

tion and the other for decryption. The encryption key is public and can be used

by anyone and decryption is kept secret that is only known to its owner. Exam-

ples of asymmetric key crytposystems are RSA [33], ElGamal [7], Elliptic curve

cryptosystems [18] etc. Here, an obvious question arises that how are asymmetric

systems made? They are built from one common principle, the one-way function.

In mathematics, one-way functions are those functions that can be computed eas-

ily in one direction but they are hard to compute in the other direction unless

a special information called trapdoor is known. The two commonly used one-

way functions in public key cryptography are integer factorization problem and

Discrete Logarithm Problem (DLP) [29]. RSA is based on integer factorization

problem. We will discuss Discrete logarithm problem in Chapter 2.
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For the security of information we encrypt the information using some crypto-

graphic method in which we use encryption and decryption keys. It suggests that

information security relies highly on these cryptographic keys and securing them

is also necessary as far as the protection of information is concerned. To address

this issue, Adi Shamir [34] and George Blakley [3] independently invented a secret

sharing scheme in 1979.

1.1 Secret sharing

In secret sharing scheme, an information is divided into n number of shares and

when specified conditions meet, original information is revealed. This idea helped

to secure the key because instead of storing it at one place, we can store it in

parts(usually called shares) and when the specified number of shares are com-

bined the key can be obtained. Shamir [34] and Blakely [3] gave the idea of secret

sharing scheme independently. Shamir’s scheme is based on polynomial interpo-

lation and Blakley’s scheme is based on geometry.

Later, many researchers have proposed and investigated new secret sharing schemes.

Some of them are described in the next section.

1.2 A look into the literature

A scheme based on general access structure was proposed by Ito, Saito and

Nishizeki [17] in 1989. In their scheme, they discussed the general access structure

that was difficult to realize in Shamir’s scheme [34]. They presented a scheme in

which any access structure can be realized. The access structure basically differ-

entiates between authorized and unauthorized sets. An authorized set is a set of

participants who can recover the secret by joining their shares and an unautho-

rized set is the set of participants who cannot get any clue about the secret by

pooling their share together. As in (t, n)-threshold scheme, t or more participants

can get the secret back by combining their shares. So, it intuitively means that
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if a set is an authorized set then any superset of it will always be an authorized

set. In short, an access structure can be made by finding the minimal set that

is eligible to recover the secret and this is the monotone property of the access

structure. Similarly, if a set is an unauthorized set then any subset of it will also

be unauthorized set. In the scheme proposed by Ito et. al. [17], they imple-

mented the generalized access structure in secret sharing scheme by giving some

information related to the shares to participants which enabled the efficient and

easy implementation of general access structure in secret sharing scheme. Tompa

and Woll in [38] proposed a scheme in 1989 which is cheating resistant. They

first showed that Shamir’s scheme is less secure and then modified it to provide

a better security against the cheaters. There are also schemes which are based

on signature to identify the cheaters like in [31]. In these schemes, dealer has

to first sign the shares before sending them to the respective participant so that

the cheating in shares is avoided. In 1988, a scheme for the verification of the

secret was proposed by Ben-or et. al. [1]. Another scheme to identify the cheaters

is proposed by Harn and Lin in 2009 [13]. Stadler in [35] worked to propose a

publicly verifiable scheme in which shares submitted by the dealer can be verified

publicly by anyone. Through this approach, not only the participant can check

that the shares are consistent and valid or not but anyone can check the validity

and consistency of the shares given by dealer. Secret sharing schemes have been

extensively studied in the literature and people worked on them to improve them

in every aspect of security and computation.

Many researchers have worked on a new idea of sharing multiple secrets. In multi

secret sharing many secrets are shared in such a way that they are distributed

among the participants and when the authorized set of participants gather their

shares to reconstruct the secrets, the secrets are revealed. He and Dawson [14], in

1994, proposed a multi stage secret sharing scheme that reconstructs several se-

crets stage by stage. The beauty of this scheme is that the participants do not have

to store many shares for several secrets. They used the idea of one way function

so that only a single share can be made useful for getting all the secrets without

revealing the shares to anyone. They added shift values to participants secret
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shares to obtain a true share and then the true shares are used instead of secret

share to reveal the secret but secret share are kept hidden in order to use them

several times. This enabled participants to use only a single share for revealing

several secrets. For the practical implementation of these schemes, many schemes

use a public bulletin board. On this public bulletin board only the dealer can add

or delete data. Dealer publishes all the public parameters that are required to

properly run the scheme on the bulletin board so that the participants can access

the information from there. There are different multi secret sharing schemes pro-

posed in [9, 19, 40]. So far, the schemes mentioned above are highly reliable on the

dealer. Dealer sends the secret shares of the participants to them. It can be risky

to use the secret shares again for the reconstruction of some other secret because

it is already known to the dealer. In 2006 Pang et. al. [20] used Shamir’s scheme

and Discrete Logarithm Problem (DLP) to present a new scheme that is inde-

pendent from getting the shares from dealer. They used the term pseudo share,

pseudo share is generated by the participant’s private share through some method.

Participants can select their shares themselves and then send the pseudo shares

to the dealer. If someone wants to obtain the secret share from pseudo share they

have to face the difficulty of DLP. It was a great breakthrough in secret sharing

schemes because participants are no more dependent on the dealer to select their

shares. Every participant can now select their share themselves. In 2008, Zhong

et. al. [39] proposed almost a same kind of scheme that was proposed by Yumin

et.al. but Zhong et. al. used first degree polynomial instead of using (t−1) degree

polynomial. It was the first time when someone had changed the degree of basic

Shamir’s scheme otherwise all the scheme proposed before it, used (t− 1) degree

polynomial. It reduced the computational cost as only has to solve first degree

Lagrange interpolation in order to recover the secret. It also reduced the storage

cost. The security level of the scheme was same as of Shamir’s scheme. There

were two drawbacks of this scheme. First one is in the phase of share generation

where scheme does not allow participants to generate their shares themselves and

the second is in the reconstruction phase where there is no criterion that checks

the validity of the shares sent by the participants and verify that the shares are
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correct. Although it improved secret sharing scheme in many aspects but at the

same time lacked in some security aspects.

As discussed earlier, due to the invention of elliptic curve, a great change has

been occurred in cryptography. It not only reduced the computational complexity

but also provided more security to cryptographic applications. Recently, it has

also found applications in secret sharing schemes. Elliptic curve is introduced in

secret sharing so that DLP is made more harder to solve and it also reduced the

computational complexity. It was first introduced in secret sharing scheme by Liu

et. al. [22] in 2008. They implemented the idea of elliptic curve in secret shar-

ing in which they used points on elliptic curve to represent multiple secrets using

self pairing. Hua and Aimin [16] in 2010 proposed a scheme which uses points

of elliptic curve to share a secret and in their scheme, shares are not generated

by the dealer instead they are selected by the participants. This scheme does

not require any private communication between the participants and the dealer

in the secret distribution phase. For reconstruction of secret, participants have to

combine their shares. This scheme has good property that the participants are

no more bound to reveal their secret share for reconstruction of the secret instead

they revealed pseudo shares for reconstructing the secret. This property allowed

the users to use secret shares multiple times. If someone wants to find the secret

share from pseudo share they have to solve the ECDLP which is assumed to be

a hard problem. A field of atleast 160 bits must be used in order to avoid any

attack on elliptic curve. Hence, it improves the security level and is efficient to use.

Further, multiple secrets can be shared and participants do not need to change

their secret shadow for different secrets to be shared.

The idea of pairing was introduced by Meneze’s et. al. [23]. Pairing in cryp-

tography is a helpful tool to check an attack on elliptic curve discrete logarithm

problem. To improve the security level in the secret distribution phase many

scheme made the participants free for getting the shares from the dealer. So that

an untrusted dealer does not send inconsistent shares and also to use the shares

several times without compromising the security. But, in the reconstruction phase

when participants send their shares to the dealer or combine their shares there is
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a heavy risk of getting inconsistent or invalid shares from the participants. There

had to be a way out of this issue to enhance the security and make secret sharing

scheme more efficient. Pairing is used to overcome this problem because paring

has a good property to verify the shares which were initially selected and later

delivered for the reconstruction are same or not. If there is a mismatch between

them then combiner asks to give the right share or can make sure that whether a

participant is valid or is it an intruder.

Das and Adhikari [4] in 2010 propsed a secret sharing scheme that is based on

a collision resistant hash function. Their scheme has a great influence because it

does not use any polynomial and hence there is no need to use Lagrange interpola-

tion for revealing the secret. It works only using a collision resistant hash function

and “XOR” operation to reveal the secret. What is more in their scheme is that

the participants can also check the secret revealed by the combiner is the actual

secret or not, by just applying the hash function on the secret. This scheme is also

a multi secret sharing scheme and as it does not require exponentiation, modular

multiplication and inversion so it is more efficient and also saves space and time.

Recently, Sreekumar and Binu proposed a multi secret sharing scheme based on

elliptic curve and pairing [2]. This scheme is a multi secret sharing scheme that

uses a general access structure. Elliptic curve made their scheme more secure and

also reduced the computational cost. They used only first degree polynomial that

made secret sharing more simpler and efficient to implement. The idea of bilinear

pairing helps the combiner to verify shares of participants in the reconstruction

phase. In this thesis, our goal is to analyze the security of the proposed scheme

[2] and present a way out. During the analysis, we found a couple of weak points

in the security of the scheme, which are as follows:

• The proposed scheme does not make participants authenticate the combiner

when they deliver the shares for reconstructing the secret.

• The proposed scheme also does not make sure that the reconstructed secret

given by the combiner is correct or not.
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We also proposed a method to improve the security of the proposed scheme [2] in

this thesis.

If we consider cryptographic technique as a building then the blocks to construct

that building are the basic terminologies that are necessary for the best under-

standing of any cryptographic technique. They are given in Chapter 2 along with

the idea of secret sharing. In Chapter 3, we will be discussing a secret sharing

scheme [2] which uses a general access structure based on Elliptic curve and pair-

ing.

It has been observed that the scheme [2] is less secure in the secret reconstruc-

tion phase where participants submit their shares to the combiner using a secure

channel. Here, participants can not authenticate the combiner. Due to which

an attacker can get the benefit and attack the secret by collecting participants

shares. Another flaw in the scheme is that the validity of revealed secret can not

be checked. A method to tackle the challenges in the security of the scheme [2] is

mentioned in Chapter 4.



Chapter 2

Preliminaries

In this chapter, we will first discuss some basics of cryptography along with some

of its applications. Then we will move to all the necessary ingredients that will be

helpful for the best understanding of the proposed scheme [2]. After that secret

sharing scheme and its properties will be studied in detail so that a reader can

understand the use of secret sharing scheme in cryptography. We will also highlight

some of the secret sharing schemes that are available in the literature.

2.1 Cryptography

Cryptography is the art of hiding the original information in some encrypted/coded

form in the presence of an adversary. It is used to hide the original information

into a coded form so that it cannot be read by anyone who is not intended to read

it. In cryptography, our ultimate focus is to make a system that encrypts and

decrypts the data and such a system is known as cryptosystem.

In cryptography, for our best understanding we usually name the two parties who

share information with each other as Alice and Bob. There are some technical

terms that are used in cryptography when Alice and Bob want to communicate

securely over a public network. The original message that is to be sent by Alice

to Bob is called plaintext. Plaintext is not sent in its original form rather it is

9
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Figure 2.1: Cryptology diagram

first altered into a form that can not be read and then it is sent to the intended

receiver. The coded message which can not be understood by anyone is called ci-

phertext. Obviously, there is an algorithm that is used to alter the plaintext into

ciphertext such an algorithm is known as encryption algorithm. A ciphertext

can not be understood as long as it is transformed back into the plaintext and

the algorithm that is used to get the plaintext from ciphertext is called decryp-

tion algorithm. There is a highly sensitive information used in encryption and

decryption algorithm for conversion of plaintext and ciphertext, called key. The

key should be kept hidden throughout in the communication because the security

of a secure communication completely depends on it.

Following are some of the applications of cryptography [24].

Confidentiality

Confidentiality refers to a state where the information that has been sent by a

sender can only be understood by intended receiver. Suppose Alice sends some

encrypted information to Bob. If an adversary, say, George obtains the encrypted

information then he can not understand it. It can be said that confidentiality

keeps the original information secret.
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Integrity

Integrity ensures that there is no change occurred in the original data during the

storage or transmission to the designated receiver. For example, if Alice sends

some encrypted information to Bob then integrity assures that the information is

not altered after sending and helps Bob to believe that the information is in its

original form.

Authentication

It enables the sender and receiver to confirm each other’s identity. Let us consider

the same scenario where Alice and Bob makes a setup to communicate securely.

For secure communication, Alice and Bob must be able to verify each others

identity. This property helps participants to make sure that the other participants

are valid and not any attacker.

Non-Repudiation

Non-repudiation means that the originator of the information cannot refuse at a

later stage. If the information is sent from Bob, there is no way out for Bob to

deny it at any later stage. This helps the receiver to gain the trust of sender in

any cryptographic protocol.

These applications establish a strong and secure communication protocol in cryp-

tography that is more reliable and practical, and hence provides a better platform

that fulfills the basic necessities of a secure communication.

There are two types of cryptographic methods as shown in Figure 2.2. They are

differentiated on the basis of keys used in them.

1. Symmetric key cryptography

2. Asymmetric key cryptography
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Figure 2.2: Cryptographic protocols

2.1.1 Symmetric key cryptography

Symmetric key cryptography [37] is also known as secret key cryptography. In this

method, two parties use a single key for the encryption and decryption of the data.

Here single key is in a sense that either the keys for encryption and decryption are

same or there must be an easy way to obtain the decryption key from encryption

key. This was the only method which was used for secure communication until

1976. The two parties who communicate with each other share the secret key

through a secure channel [28]. Next, we will see the working of symmetric key

cryptography as shown in Figure 2.3. Let the two parties be Alice and Bob. Alice

and Bob want to communicate with each other on an insecure channel e.g. Inter-

net. First, Alice uses the secret key to encrypt the information which she wants to

share with Bob using an encryption algorithm. After that she sends the encrypted

message to Bob over an insecure channel and also sends the key to Bob through

a secure channel. When Bob receives the key he can easily decrypt the message

using the decryption algorithm. In this method, first party after encrypting the

message must send the encryption key to the other party otherwise the ciphertext

can not be deciphered. This requires the use of a secure channel to send the key to

the designated receiver. The use of secure channel is must, else the higher security
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Figure 2.3: Symmetric Key Protcol

can not be achieved. Examples of symmetric key cryptography are AES [36], DES

[15], 3DES [30], RC4 [27] etc.

It appears that when two parties share the same key the security can be compro-

mised. There are basically two issues with symmetric key cryptography; one is

key management and the other is security.

2.1.2 Asymmetric key cryptography

As mentioned above that symmetric key cryptography had some drawbacks. Due

to which there was a need of an improved method which solves the issues of

sharing a key. To overcome this problem, Whitfield Diffie and Martin Hellman

in 1976 gave the idea of public key cryptography also known as asymmetric key

cryptography [5]. This method is based on one way trapdoor function which are

easy to compute in one direction but can not be inverted back unless a special

information called trapdoor is known. In this approach, two different keys are

used; one for encryption and the other for decryption. Encryption key is known as

public key and decryption key is called private key which is kept secret. Anyone

can use public key to send the message to someone but to decrypt the message
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only private key can be used which is only known to the owner of it. This way

Figure 2.4: Asymmetric Key Protcol

public key cryptography addresses the issues of secret key cryptography that can

be seen in Figure 2.4. The use of secure channel to share the decryption key was

no more required and hence improved the security. Anyone who is the owner of

the private key can now make sure that they have the full authority to decipher

the message. Examples of such a system are Diffie-Hellman key exchange protocol

[5], ElGamal [7], RSA [33].

2.2 Cryptananlysis

The method which is used to obtain the plaintext from ciphertext without having a

key or obtaining a key from ciphertext is called cryptanalysis [37]. Cryptanalyst is

someone who does this job. It can be said that a cryptanalyst does cryptanalysis on

a cryptographic protocol by finding out some weaknesses in one of the following

four properties; confidentiality, integrity, authenticity and non-repudiation. If

either one of then is found weak then the security of the communication is not

strong and can be attacked successfully. Cryptanalysis is used when someone wants

to attack a secret communication or to check how much secure a cryptographic
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system is. There are many types of cryptographic attacks [37] available in the

literature, some of them are as follows:

1. Ciphertext only attacks

In this kind of attack, cryptanalyst either try to reveal a meaningful message

(original message) from ciphertext or work for obtaining the key. He orig-

inally does not know any thing about the plaintext but he uses ciphertext

to attack the original message. Frequency of the letters is also analyzed to

attack the message.

2. Known plaintext attacks

This is the attack performed by a cryptanalyst when he knows some cipher-

text and their corresponding plaintext. On the basis of the previously known

information he either tries to recover the key or makes an efficient algorithm

to decrypt any further ciphertext.

3. Chosen plaintext attacks

Chosen plaintext attack is the one in which attacker can get the cipher text

for the arbitrarily chosen plaintext. Using these plaintext and ciphertext, he

tries to recover the key.

4. Chosen ciphertext attacks

In chosen ciphertext attack, the attacker gets the plaintext of the chosen

ciphertext and then using these results he tries to figure out the secret key

or tries to obtain as much information as he can regarding the key.

5. Man-in-the-middle attacks

In man-in-the-middle attack, the attacker sits between two parties who are

secretly communicating with each other and gets control over communication

at both ends that is sender and receiver ends. To make this kind of attack

possible, the attacker first choses two secret keys. After choosing the keys,

he starts the communication with first party using the first key and when he

gets the reply in encrypted form he can easily decrypt the message since the

key is known to him. Then, he encrypts the received message again using
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the second key and sends this message to second party and when he gets the

reply from second party he can decrypt it using the key. This is how this

attack works and the attacker gets control over the communication between

two parties by sitting between them.

6. Brute force attacks

In this attack, the attacker tries every possible key in order to guess the

original plaintext from ciphertext. With bigger key space, this attack can

be made hard.

2.3 Mathematical background

Next, we see some basic ideas from mathematics which are helpful to understand

the rest of the chapters presented in this thesis.

Definition 2.3.1. (Groups)

A non-empty set G is called a group [21] under a binary operation ‘∗’, if for any

three elements a, b, c ∈ G, the following axioms are satisfied:

1. Closure law: a ∗ b ∈ G

2. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)

3. Identity element: There is an identity element e ∈ G such that

a ∗ e = e ∗ a = a, for all a ∈ G

4. Inverse element: For all a ∈ G, there exists an element a′ ∈ G such that

a ∗ a′ = a′ ∗ a = e,

then a′ is called the inverse of a.

Definition 2.3.2. (Abelian group)

If further the group G verifies
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a ∗ b = b ∗ a

for all a, b ∈ G then G is called an abelian group. The set of real numbers R

and set of integers Z are the examples of abelian group with respect to addition.

The set of real numbers R \ {0} is an example of an abelian group with respect to

multiplication.

Definition 2.3.3. (Cyclic group)

A group G is called a cyclic group, if it can be generated by a single element g ∈ G.

This g is called the generator of G and notation for it is 〈g〉. Thus every a ∈ G has

the form gr for some integer r. Further, every cyclic group is an abelian group.

Let G be a cyclic group and a, b ∈ G then a = gr and b = gs

⇒ ab = grgs = gr+s = gs+r = gsgr = ba

The set of integers Z is cyclic under addition with 1 or −1 as generators of it.

Definition 2.3.4. (Ring)

A non-empty set R together with two algebraic operations ‘+’ and ‘.’, is called a

ring [21]. If for all a, b, c ∈ R, the following conditions hold:

1. Abelian: R is an abelian group under addition.

2. Associativity: (a.b).c = a.(b.c)

3. Distributivity: R holds both right and left distributive laws:

(b+ c).a = b.a+ c.a

a.(b+ c) = a.b+ a.c .

Definition 2.3.5. (Commutative ring)

The ring R is said to be a commutative ring, if it satisfies:

a.b = b.a ; ∀ a, b ∈ R

Examples of commutative ring are (Z,+, .), (R,+, .) and (Zn,+, .).
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Definition 2.3.6. (Field)

A commutative ring F is called a field [21], if the non-zero elements of F form a

group under multiplication. Examples of field include R, Q and C.

Definition 2.3.7. (Order of a field)

The number of elements that a finite field contains is called its order. Further, a

field with finite number of elements is called a finite field.

Definition 2.3.8. (Galois field)

A finite field of order q is also called Galois field [21]. It is denoted as GF (q), where

q is some prime power pn, n is some positive integer, and p is called characteristic

of the field.

In cryptography, generally our main focus is on two types of Galois fields. First,

when n = 1, that is, GF (p) and second, when p = 2 , that is, GF (2n). In the

later case, we have polynomials of degree at most n − 1 with coefficients from

GF (2) = {0̄, 1̄}.

Definition 2.3.9. (Extension field)

A field K is said to be the extension field of a field F if F is contained by K. It can

also be said that F is subfield of K. Extension field is denoted as K/F. Moreover,

for a polynomial p(x) in F there exists an extension field K of F which contains

the roots of the polynomial p(x).

Examples of extension field include R as extention field of Q denoted as R/ Q, C

as extension field of R denoted as C/R etc.

When we are dealing with a large finite field, it is not very easy to find the

multiplicative inverses, so there is an algorithm known as extended Euclidean

algorithm which is taken into account for finding the inverse of all the numbers

lying in the field.

Algorithm 2.3.10.

The extended Euclidean algorithm for finding the inverse of a number b under

modulo a is as follows:

Input: a and b

Output: b−1 mod a
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1. Start by setting (A,B,C) = (1, 0, a) and (Q,R, S) = (0, 1, b)

2. If S = 0 then return that the inverse of b does exist and C as the gcd of

(a, b).

3. If S = 1 then return that R is the inverse of b and S as the gcd of (a, b)

4. Store Z = bC/Sc, where b.c represents the floor value.

5. (L,M,N) = (A− ZQ,B − ZR,C − ZS)

6. (A,B,C) = (Q,R, S)

7. (Q,R, S) = (L,M,N)

8. Go back to step no.2

Now we explain tables of addition and multiplication in finite fields. Let us consider

the finite field F13 whose elements are {0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄, 9̄, 1̄0, 1̄1, 1̄2}. Addition

and multiplication in F13 are shown in Tables 2.1 and 2.2 respectively.

+ 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12 0
2 2 3 4 5 6 7 8 9 10 11 12 0 1
3 3 4 5 6 7 8 9 10 11 12 0 1 2
4 4 5 6 7 8 9 10 11 12 0 1 2 3
5 5 6 7 8 9 10 11 12 0 1 2 3 4
6 6 7 8 9 10 11 12 0 1 2 3 4 5
7 7 8 9 10 11 12 0 1 2 3 4 5 6
8 8 9 10 11 12 0 1 2 3 4 5 6 7
9 9 10 11 12 0 1 2 3 4 5 6 7 8
10 10 11 12 0 1 2 3 4 5 6 7 8 9
11 11 12 0 1 2 3 4 5 6 7 8 9 10
12 12 0 1 2 3 4 5 6 7 8 9 10 11

Table 2.1: Addition in F13

In Table 2.1 and Table 2.2 basic arithmetic modulo operation is used. Addi-

tive identity is the class 0 ( mod 13) and multiplicative identity is the class 1 (
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× 0 1 2 3 4 5 6 7 8 9 10 11 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12
2 0 2 4 6 8 10 12 1 3 5 7 9 11
3 0 3 6 9 12 2 5 8 11 1 4 7 10
4 0 4 8 12 3 7 11 2 6 10 1 5 9
5 0 5 10 2 7 12 4 9 1 6 11 3 8
6 0 6 12 5 11 4 10 3 9 2 8 1 7
7 0 7 1 8 2 9 3 10 4 11 3 10 4
8 0 8 3 11 6 1 9 4 12 7 2 10 5
9 0 9 5 1 10 6 2 11 7 3 12 8 4
10 0 10 7 4 1 11 8 5 2 12 9 6 3
11 0 11 9 7 5 3 1 12 10 8 6 4 2
12 0 12 11 10 9 8 7 6 5 4 3 2 1

Table 2.2: Multiplication in F13

mod 13). We can observe the additive and multiplicative identities of any number

in F13 from these tables.

Definition 2.3.11. (Discrete logarithm problem)

The logarithms which are defined using multiplicative cyclic groups are called

discrete logarithms, that is, gx ≡ y mod p ⇒ logg y ≡ x mod p. Then discrete

logarithm problem is to find ‘x’ when ‘g’ and ‘y’ are known under modulo p. The

discrete logarithm [29] is a hard problem when p is a large prime.

Definition 2.3.12. (Polynomial interpolation)

Polynomial interpolation is a method for approximation of a continuous function

whose values on some points are known and the values between the points are

not known. Polynomial interpolation is thus used to approximate the function’s

values between the known values. So, the interpolating polynomial provides us the

exact function’s values at given points and approximation for the points at which

the function’s value is not known. For example, according to population census

in 1997, Pakistan population was 132,352,279. If in 2002, it was 152,287,108. In

2007, it was 171,517,103 and in 2012 if the population was 190,483,542. According

to latest census of 2017, it is 207,774,521. In this case, the values of population

census are known for the years 1997, 2002, 2007, 2012 and 2017. But, if we want to

know some approximated value for population between 1998 and 2017 apart form
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the already known values, say, on 2010 then polynomial interpolation is good tool

to get an approximation for the year 2010. The most common example of interpo-

lation is linear interpolation that uses a straight line for interpolation between the

given points. Polynomial interpolation is thus a method that uses a polynomial, of

degree less or equal to the number of known points, to approximate the function.

There are different method to determine the polynomial for approximating the

function. In our thesis, we will use Lagrange interpolation.

Definition 2.3.13. (Lagrange interpolation)

Suppose a function f(x) is known on n data points that is (x1, y1), (x2, y2), ..., (xn, yn)

are known. Then the Lagrange interpolating polynomial of degree n− 1 is

P (x) = φ1(x)y1 + φ2(x)y2 + ...+ φn(x)yn =
n∑

i=1

φi(x)yi (2.1)

where

φi(x) =
(x− x1)(x− x2)...(x− xn)

(xi − x1)(xi − x2)...(xi − xn)
.

Note that, in the denominator xi 6= xj for j = 1, 2, ..., n, or

φi(x) =
∏

1≤j≤n

x− xj
xi − xj

, j 6= i.

Equation 2.1 can now be written as,

P (x) =
n∑

i=1

yi
∏

1≤j≤n

x− xj
xi − xj

, j 6= i. (2.2)

which is the required Lagrange interpolation formula to approximate a function

f(x).

Example 2.3.14. In this example, we approximate the function f(x) = x2 at

x = 1 using Lagrange interpolation.

Let f(x) be defined at points x1 = 0, x2 = 2 and x3 = 4 as,

y1 = f(x1) = 0
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y2 = f(x2) = 4

y3 = f(x3) = 16.

To construct the Lagrange interpolating polynomial P (x) of degree 2, we first find

φi(x) for i = 1, 2, 3

φ1(x) =
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)

φ2(x) =
(x− x1)(x− x3)

(x2 − x1)(x2 − x3)

φ3(x) =
(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Putting the values of x1, x2 and x3, φ1(x), φ(x) and φ3(x) take the form

φ1(x) =
(x− 2)(x− 4)

(0− 2)(0− 4)
=

(x− 2)(x− 4)

8

φ2(x) =
(x− 0)(x− 4)

(2− 0)(2− 4)
=

(x)(4− x)

4

φ3(x) =
(x− 0)(x− 2)

(4− 0)(4− 2)
=

(x)(x− 2)

8
.

Putting φ1(x), φ2(x) and φ3(x), and y1, y2, y3 in Equation 2.1, gives us P (x),

P (x) = 0.
(x− 2)(x− 4)

8
+ 4.

(x)(4− x)

4
+ 16.

(x)(x− 2)

8

P (x) = (x)(4− x) + 2(x)(x− 2).

So, P (1) is

P (1) = 1.
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2.4 Elliptic curve cryptography

As mentioned earlier, computation of discrete logarithm problem is considered a

hard problem. This problem can be made much harder if it is defined using elliptic

curves and which is then known as “elliptic curve discrete logarithm problem” [18].

Elliptic curves provide more security to cryptographic schemes and it also results

a reduction in computational complexity. There are many attacks on discrete

logarithm mentioned in the literature, one of them is attack of sub exponential

algorithm. This attack can be avoided if at least 1024 bit field is used. Elliptic

curve can provide a same level of security by using a field of 160 bits and that is

why elliptic curve is considered to provide more security with less number of bits

and as a consequent, it saves both the time and the space. We now see what are

elliptic curves and how they are used in cryptography.

Elliptic curve is defined by a generalized Weierstrass equation as

y2 + c1xy + c2y = x3 + c3x
2 + c4x+ c5 (2.3)

where the variables x and y and constants c1, c2, c3, c4 and c5 belong to a field.

This curve should be non-singular that is satisfied by the determinant which must

not be equal to zero (i.e. 4 6= 0). But, mostly our interest is in the simplified

form of the Weierstrass equation which is

y2 = x3 + c1x+ c2. (2.4)

Here c1, c2 are again some constants, together with an extra point which is located

at infinity and denoted as O, called the point at infinity. Here, non singularity is

ensured by 4 : 4c31 + 27c 62 = 0 In the above equations, both the variables x, y and

all the constants are the elements of some field F. If we consider the field of real

numbers then the variables x, y ∈ R and the constants c1, c2 ∈ R and the set of

points which satisfy Equation 2.4 is denoted as ER(c1, c2). For the the geometric

characteristics of elliptic curve over real numbers R, let us consider an elliptic
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curve

E : y2 = x3 + x+ 6. (2.5)

In the above equation c1 = 1 and c2 = 6 and the variables (x, y) ∈ R. The

values of (x, y) that satisfy Equation 2.5 are shown through a graph in Figure

2.5. Further, group operations can be defined on elliptic curve ER(c1, c2) and to

Figure 2.5: Graph of E(1, 6) over R

avoid having vertices or edges, the discriminant 4a3 + 27b2 6= 0. We are now

going to observe geometrical addition of points on elliptic curve and then give the

algebraic description of point addition on an elliptic curve. This will help us to

define a group on an elliptic curve under the addition operator.

2.5 Group operations on elliptic curves

In this section, we define group operations on the points of elliptic curve P and Q

with x and y coordinates.

1. The point at infinity O is taken as additive identity element, such that

P +O = P
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2. The negative of any given point P can be computed by just taking the

negative of y−coordinate. Which means the negative of P (x, y) is P (x,−y).

3. The operation for adding two different points can also be defined. Suppose,

points P and Q are to be added. The algorithm to add these points is as

follows:

a) Draw straight line through points P and Q.

b) The line intersects the elliptic curve at point R.

c) Take negative of R.

d) This −R is the point which we obtain from P +Q.

It is clear from the above procedure that P − P gives us the point O at

infinity.

4. We can also add a point P to itself which means we want to double the point

P . Here is the procedure to do so

a) Draw a tangent line through point P .

b) Intersection of tangent line with elliptic curve gives us point S.

c) The negative of point S is the point which is obtained when P is added

to itself.

Next, we plot a graph for an elliptic curve and also discuss the point addition for

elliptic curve using the procedure mentioned in Section 2.5.

Geometric description for adding points of elliptic curve

Again using Equation 2.5 and taking two points P (2, 4) and Q(−1, 2) of it, we get

a new point R(x, y) as follows:

Figure 2.6 elaborates the points addition on elliptic curve. Suppose the points

P (2, 4) and Q(−1, 2) are to be added. Draw a tangent line through P and Q that

intersected the curve at point S. Then to get the required point R which is the
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Figure 2.6: Graph of elliptic curve points addition over R

sum of P and Q, Translate the y − coordinate of S and we are done with the

addition. Also, we know that if additive inverse of a point say P is added to itself

then we get the additive identity. Now, let us see in the case of elliptic curve that

how the identity O is obtained. We already know that the negative of P (x, y)

is P (x,−y) so, for P (2, 4) its negative −P is (2,−4), then by adding P into −P

graphically. We can observe from Figure 2.7 that the line that has been drawn

through P and −P goes to infinity and gives us point at infinity.

We are now all set to define the formulae to add points on elliptic curve. Suppose

that the line through points P and Q be L, then

L : y = sx+ c.

Slope s of the line L is given as

s =


y2−y1
x2−x1

, if points are distinct

3x2
1+a

2y1
, for point doubling.
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Figure 2.7: Elliptic curve point at infinity

then (x3, y3) = P +Q, in which

x3 = s2 − x1 − x2

y3 = s(x1 − x3)− y1

In cryptography, we are generally interested to define a group on elliptic curve

over a finite field Fp defined by EFp(a, b). The idea to use elliptic curve in cryp-

tography was given independently by Neal Koblitz [18] and Victor Miller [26] in

1985. Elliptic curve is defined by a cubic equation in two variables along with

some coefficients over a finite field. The equation for elliptic curve over GF (p) is

as follows:

y2 = (x3 + ax+ b) mod p

together with a point at infinity O. This curve should not be singular and has

distinct roots which is ensured by the determinant 4a3 + 27b2 6= 0. It basically

makes sure that the curve has no vertices and self-intersections. All the variables

and coefficients belong to Zp. The operations that have been mentioned earlier

to add points are more or less same in the case of a finite field Fp. The extra

thing for working in Fp as compared to R is that the modulo p has to be used in

each operation. Geometrically, it is clear from Figure 2.8 that over a finite field
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Fp the graph does not produce a curve rather we have scattered points this time.

Consider an elliptic curve:

E : y2 = (x3 + x+ 6) mod 13 (2.6)

The points P (x, y) along with their additive inverses P ′(x, y) which satisfy Equa-

tion 2.6 are shown in Table 2.3:

x y2 y1,2 P (x, y) P ′(x, y)
0 6 - - -
1 8 - - -
2 3 4,9 (2,4) (2,9)
3 10 6,7 (3,6) (3,7)
4 9 3,10 (4,3) (4,10)
5 6 - - -
6 8 - - -
7 7 - - -
8 6 - - -
9 3 4,9 (9,4) (9,9)
10 2 - - -
11 9 3,10 (11,3) (11,10)
12 4 2,11 (12,2) (12,11)

Table 2.3: Points of EF13(1, 6)

The graph for Equation 2.6 is shown in Figure 2.8.

Elliptic curve points addition for EF13(1, 6) is given in Table 2.4.

The points on elliptic curve form a cyclic group which is always abelian as proved

on page 17 of this thesis. It follows from the definition of cyclic group that all the

elements of the group can be generated by a single element of the group which

leads us to define the discrete logarithm problem in elliptic curve cryptography.

2.5.1 Elliptic curve discrete logarithm problem

Since elliptic curve on a finite field forms a cyclic group. So, for an elliptic curve

E over Fp and for points P and Q belong to the additive group formed by points
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• y2 = x3 + x+ 6 mod 13 • Points: 13 (infinity not shown)

Figure 2.8: Graph of EF13(1, 6)

+ ∞ (2,4) (2,9) (3,6) (3,7) (4,3) (4,10) (9,4) (9,9) (11,3)(11,10)(12,2)(12,11)
∞ ∞ (2,4) (2,9) (3,6) (3,7) (4,3) (4,10) (9,4) (9,9) (11,3) (11,10) (12,2) (12,11)

(2,4) (2,4) (9,9) ∞ (12,2) (4,3) (4,10) (3,6) (2,9) (11,10) (9,4) (12,11) (11,3) (3,7)
(2,9) (2,9) ∞ (9,4) (4,10) (12,11) (3,7) (4,3) (11,3) (2,4) (12,2) (9,9) (3,6) (11,10)
(3,6) (3,6) (12,2) (4,10) (11,10) ∞ (2,4) (9,9) (4,3) (11,3) (3,7) (9,4) (12,11) (2,9)
(3,7) (3,7) (4,3) (12,11) ∞ (11,3) (9,4) (2,9) (11,10) (4,10) (9,9) (3,6) (2,4) (12,2)
(4,3) (4,3) (4,10) (3,7) (2,4) (9,4) (2,9) ∞ (12,11) (3,6) (11,10) (12,2) (9,9) (11,3)
(4,10) (4,10) (3,6) (4,3) (9,9) (2,9) ∞ (2,4) (3,7) (12,2) (12,11) (11,3) (11,10) (9,4)
9,4 (9,4) (2,9) (11,3) (4,3) (11,10)(12,11) (3,7) (12,2) ∞ (3,6) (2,4) (4,10) (9,9)
(9,9) (9,9) (11,10) (2,4) (11,3) (4,10) (3,6) (12,2) ∞ (12,11) (2,9) (3,7) (9,4) (4,3)
(11,3) (11,3) (9,4) (12,2) (3,7) (9,9) (11,10)(12,11) (3,6) (2,9) (4,10) ∞ (4,3) (2,4)
(11,10) (11,10)(12,11) (9,9) (9,4) (3,6) (12,2) (11,3) (2,4) (3,7) ∞ (4,3) (2,9) (4,10)
(12,2) (12,2) (11,3) (3,6) (12,11) (2,4) (9,9) (11,10) (4,10) (9,4) (4,3) (2,9) (3,7) ∞
(12,11) (12,11) (3,7) (11,10) (2,9) (12,2) (11,3) (9,4) (9,9) (4,3) (2,4) (4,10) ∞ (3,6)

Table 2.4: Point additions in EF13(1, 6)

of elliptic curve, we can write

P + P + P + ...+ P︸ ︷︷ ︸
t times

= tP = Q.
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From the above mentioned equation, it can be observed that for given t and P it

is easy to compute Q but it is relatively hard to find t knowing only P and Q.

t = logP Q

and the problem of finding this t is called Elliptic Curve Discrete Logarithm Prob-

lem (ECDLP) [18] in cryptography.

Definition 2.5.1. (Bilinear Pairing)

Let G1 be an additive cyclic group of order n, where n is prime, with identity O

and G2 be a multiplicative cyclic group of order n with identity 1. The mapping ê

ê : G1 ×G1 → G2

is called bilinear mapping if it satisfies the following three properties:

1. Bilinearity: For all P1, P2, P3 ∈ G1,

a. ê(P1 + P2, P3) = ê(P1, P3).ê(P2, P3)

b. ê(P1, P2 + P3) = ê(P1, P2).ê(P1, P3).

2. Non-Degeneracy: It must not map to the identity of G2 for all P ∈ G1.

That is, ê(P, P ) 6= 1, for all P ∈ G1.

3. Computability: There should be a polynomial time algorithm that com-

putes ê.

Weil pairing [23] and Tate pairing [10] are the examples of such a construction.

These both pairings are computed using Miller’s algorithm [25]. We will use

bilinear pairing to secure our cryptosystem later in Chapter 3.



Preliminaries 31

2.6 Hash functions

Hash functions have a great importance in cryptography. They are used to map

any length of message to a fixed length output called the digest of the message.

Figure 2.9 illustrates the phenomena of a hash function.

Figure 2.9: Hash function

The message digest should be unique for a particular message so that it can be

considered as a finger print of the message. A good hash function contains the

following properties:

1. It can be applied to any length message.

2. It must always produce a fixed length message digest.

3. It is relatively easy to compute the hash value of the message.

4. It should be one way in a sense that it must be impossible to find the input

message from the message digest.

5. The hash of two different messages must not be same.

6. It must provide integrity to the message. i.e, a minor change in the message

results major change in the hash value.



Preliminaries 32

Examples of famous hash algorithms are SHA1 [6], MD5 [32] and SHA-512 [12].

2.7 Secret sharing

Secret information or data cannot be shared with everyone and only a trustworthy

person can keep it secret. Unfortunately, there is no mechanism which guarantees

a person being honest and trustworthy. So when it comes to keeping something

secret; it is always better to share some parts of secret information with people

rather sharing the complete secret with only one person. In this way, each person

has a less knowledge or control to reveal the secret. When we share a secret with

one person, we allow them to have all the power. They might deceive us by sharing

the secret with those who are not intended to know about it.

Let us consider an example. Suppose there is a secret key that is used to open

many important files. As this key is very important and if it is lost or placed in

the wrong hands, all the important information might be known to everyone. Here

an important question arises that how can we make a setup which fulfills these

basic necessities of keeping the information secret. Have a look on another prob-

lem. suppose there are eleven scientists working on a secret project. Obviously,

they wish to store the important documents somewhere may be in a cabinet to

make sure that they are safe. But here the problem is that they cannot trust a

single person to keep the key of the cabinet. Now suppose they wish to set up a

mechanism through which eleven scientists must be present to unlock the cabinet.

For this purpose, they would need to have 462 locks and 252 keys per scientist.

This is clearly impractical with these big numbers of locks and keys. So, what

should be done to overcome all these difficulties for making a better system that

guarantees our secret data being safe.

We often keep our secret information in human brain or in a computer system so

that it is well guarded. But any misfortune like a sudden death of the person or

computer breakdown may result in lose of the secret information. We can over-

come this issue by keeping the multiple copies of the secret information at different

places but then we are compromising the security of the secret information. So
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we need to find an approach which provides security to our secret information and

which is reliable. As we cannot give authority to a single person to have the com-

plete knowledge of the secret because they can take advantage of their authority.

Also, we can not keep the multiple copies of the secret because that results in

compromising the security of the information. There can be the solution to these

problems, if a proper set-up is built that do not give authority to a single person

and rather it requires the participation of a few people in revealing the secret.

As far as cryptography is concerned, we always tend to secure our data so that

it is not placed in the wrong hands. We know that encrypting our data makes

it confidential for the third party and for encryption, we use different schemes

which use a secret key to encrypt the data. Here, it is very much clear that our

scheme is dependent on the private key. If this key is lost or placed in the wrong

hands the whole scheme can become insecure. Cryptographic keys are often of

a big length that is why it is not easy to remember them or to store them in

someone’s mind. The owners often keep their private keys in a computer system

or somewhere, where they can be accessed easily. But we have already discussed

that these scenarios could increase the security breaches. In the next paragraph,

the solution to all these difficulties is discussed.

Figure 2.10: Secret Sharing (t, n)-threshold Protocol
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In 1979, Shamir [34] and Blakley [3] independently invented secret sharing scheme.

They proposed schemes in which they made it possible to save cryptographic keys

or any highly important secret information. In a secret sharing scheme, a secret

is split into n number of pieces such that these pieces individually do not give

any information about the secret information. When it is necessary to get back

the secret from these pieces, any t or more pieces are combined and the secret is

obtained. This scenario is also explained through Figure 2.10. Here, one thing is

important that any less than t pieces of shares must not give any knowledge of

the secret otherwise the technique will be of no use. A secret sharing scheme that

uses t out of n pieces to recover the secret is known as (t, n) -threshold scheme.

2.7.1 Shamir secret sharing scheme (SSSS)

Shamir scheme [34] is a (t, n) -threshold scheme. The secret ‘K’ can only be

recovered when ‘t’ out of ‘n’ shares are available to reconstruct the secret ‘K’. The

idea was based on polynomial interpolation for example Lagrange interpolation

that we saw earlier in Definition 2.3.13. First, a polynomial of degree (t − 1) is

constructed in which secret K is placed as the first co-efficient of it and rest of the

co-efficients are picked at random from Zp. By using the constructed polynomial,

shares are generated. When it is required to get back the secret, t shares are joined

together. This scheme achieves the goal for secret K to be easily computed by

having a knowledge of t shares but knowledge of less than t shares do not give any

idea about it. We will shorlty give the complete procedure of Shamir scheme and

see how does it work. But, before proceeding to it let us fix some notations.

As we know that there will be participants or members who take part in secret

sharing. Let ‘P ’ be the set of n participants and the secret to be shared be

‘K’. The secret ‘K’ is chosen by a special participant who is trusted by everyone,

called dealer ‘D’. Now, the dealer ‘D’ splits the secret ‘K’ into ‘n’ number of pieces

called shares. Each share should be delivered to the designated participant using a

secure channel so that any other participant does not know the share of the other

participant. Once the shares are secretly delivered, any subset of ‘t’ participants
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can reconstruct the secret by combining their shares. Any subset of less than ‘t’

participants cannot obtain any information or clue about the secret. Further, it

should be made clear that which set of participants can recover the secret and

which cannot. The set of participants which can recover the secret must be equal

to or greater than t is known as authorized set. The set of participants which

are less in numbers than ‘t’ cannot recover the secret or get any clue about it is

known as unauthorized set. Shamir’s scheme uses modular arithmetic instead

of real arithmetic. Public parameters in SSSS are Zp and xi’s which are selected

by the dealer. The scheme has three phases as mentioned below.

A. Initialization

To initialize the scheme, n distinct non-zero elements xi ∈ Zp are randomly

chosen by the dealer D and then they are made public.

B. Share Distribution

1. The aim of this scheme is to share the secret K among the participants

Pi. In order to achieve this aim, D has to formulate a polynomial of

degree t − 1 for which the coefficients a1, a2, a3, ..., at−1 are chosen at

random and first coefficient a0 is the secret K.

2. After constructing the polynomial, each participant share yi is gener-

ated from it. By putting the values of xi in the polynomial we get each

participant’s share as yi = q(xi), for 1 ≤ x ≤ n, where

q(x) =
t−1∑
j=0

ajx
j mod p. (2.7)

3. Each participant Pi is given their respective share yi.

C. Secret Reconstruction

To reconstruct the secret, the combiner uses Lagrange interpolation. The
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Lagrange interpolation formula is given below,

q(x) =
t∑

i=1

yi
∏

1≤j≤t

x− xj
xi − xj

, and j 6= i (2.8)

As first coefficient of the polynomial is our secret K. To obtain the secret

from Lagrange interpolation we have to evaluate it at x = 0. Evaluating

Lagrange interpolation for x = 0 reduces Equation 2.8 to

K = q(0) =
t∑

i=1

yi
∏

1≤j≤t

xj
xj − xi

, and j 6= i (2.9)

The formula in Equation 2.9 is the required formula for reconstructing the

secret K.

The procedure of SSSS is further explained step by step in next example.

Example 2.7.1. Suppose we want to share a secret K = 4 using Shamir’s

scheme. We fix Z19 and proceed as follows:

A. Initialization

Suppose that p = 19 that means we will be working throughout in the field

Z19. Let the secret be K = 4 and total number of participants be n = 5 and

let the number of participants which can reconstruct the secret be t = 3.

For each participant Pi, an integer xi is chosen at random from Z19. In this

example, we let xi = i, for 1 ≤ i ≥ 5.

B. Share distribution

1. As t = 3 and we know that the polynomial degree is one less than t, so,

it will be degree two polynomial. To construct the degree two polyno-

mial, three coefficients are required. Two coefficients a1 = 11, a2 = 15

are chosen at random from Z19 and first coefficient a0 = K, then the

polynomial gets the form:

q(x) = 4 + 11x+ 15x2 mod 19; (2.10)
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2. The shares of the participants are generated by putting xi in polynomial

2.10, we get

(a) y1 = q(1) = 11

(b) y2 = q(2) = 10

(c) y3 = q(3) = 1

(d) y4 = q(4) = 3

(e) y5 = q(5) = 16.

3. A secure channel will be used here for delivering the share to corre-

sponding partcipant.

C. Secret reconstruction

The secret is calculated using the Lagrange formula mentioned in Equation

2.9 inverses of the numbers below are obtained through algorithm 2.3.10

K =

[
11
( 2

2− 1

)( 3

3− 1

)
+ 10

( 1

1− 2

)( 3

3− 2

)
+ 1

( 1

1− 3

)( 2

2− 3

)]
mod 19

=
(
11.2.3.2−1 − 10.3 + 1.2−1.2) mod 19.

The inverse of 2−1 mod 19 = 10 is computed using Extended Euclidean

Algorithm 2.3.10.

K = (660− 30 + 20) mod 19

K = 650 mod 19

K = 4.

We can observe that the secret value chosen initially and the secret value obtained

by Lagrange formula are same. So, the reconstructed secret is correct and the

example ends with it.
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2.8 Summary

This chapter is the base of the thesis because it consists many simple and some ad-

vanced concepts. Without uderstanding them it might be a little difficult to have

a good understanding of this thesis. First, we briefly gave an overview of basics of

cryptography and the bottom line is that it provides security to highly confiden-

tial information. Afterwards, we discussed the important characteristics of two

different cryptographic protocols; their drawbacks and strong areas. Mathemati-

cal background related to groups, rings and field have also been included to have

a good grip to understand cryptographic protocols. One of the most important

things in cryptography on which many cryptosystems are based known as discrete

logarithm problem, has also been taken into the consideration in this chapter.

Then we elaborated the use of elliptic curve in cryptography and discussed how

the security is improved and computations are reduced. Elliptic curve makes DLP

more harder for attackers. We also explained the concept of hash functions be-

cause they are being used extensively in many cryptographic application. Finally

after discussing some basics, we moved towards the theme of the thesis that is

secret sharing scheme and there we discovered the importance of secret sharing

and its working. Shamir scheme’s algorithm along with an example was presented

and discussed. In a nutshell, all the basics related to the secret sharing scheme

were mentioned and discussed in this chapter.



Chapter 3

Secure and efficient SSS based on

elliptic curve and pairing

In this chapter, we will look into the scheme proposed by Sreekumar and Binu [2]

that is based on Shamir’s secret sharing scheme but it is highly secured and efficient

as compared to Shamir’s secret sharing scheme [34]. The complete procedure of

the scheme is mentioned in this chapter. Further, this chapter also covers the

security as well as the computational aspects of the scheme. During the analysis,

we noticed that there are some security flaws in this scheme which we will discuss

in Chapter 4 along with the counter-measures.

3.1 Introduction

From the discussion of previous chapter we know that elliptic curve plays a vi-

tal role in cryptography. It takes the security of cryptographic applications to

the next level. Since it provides a great security using only 160 bits field so the

computational complexity which was a challenging problem in finite field to get a

desired security has also been reduced to a great extent. That is why it caught

the attentions of many researchers in cryptography and many different applica-

tions based on elliptic curve are being introduced. The scheme that is proposed

39
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by Sreekumar and Binu [2] is based on Shamir’s secret sharing scheme and elliptic

curve pairing. Use of elliptic curve makes their scheme more efficient and bilinear

pairing is used for verification purposes in the reconstruction so that a cheater

or a disloyal participant can be caught. The scheme also allows participants to

choose their shares and hence it makes the participants independent from the in-

volvement of dealer in selecting the shares. Participants evaluate pseudo shares

from their secret shares and then the pseudo share are used for the reconstruction

of the secret. Pseudo shares allow participants to keep their actual shares hidden

and use them to reveal multiple secrets. The scheme is also dynamic in nature

because participants can be added or deleted without any change in the secret

share of the participants. Moreover, the secret or access structure can also be

modified without having any influence on the existing participants secret shadow.

The access structure contains the monotone property which means a superset of

an authorized set is also authorized and can recover the secret as well and if a set

of participants is unauthorized than any of its subset will also be unauthorized.

Multiple secrets can also be reconstructed using the proposed scheme and it does

not require participants to change their shares. Now, we move towards the con-

struction of the scheme. Here, we only mention the process for sharing a single

secret but it can also be extended to share multiple secrets.

3.2 The proposed scheme

To initialize the scheme a public bulletin board is used for the convenience of

participants to access publicly available values. Any kind of modification on the

bulletin board can only be made by the dealer. For the convenience of reader, all

the global parameters used in the scheme are mentioned in Table 3.1.

Let there be n participants P1, P2, ..., Pn taking part in secret sharing and a mono-

tone access structure ß0 = {ß1, ß2, ..., ßt} is taken. Participants choose their shares

without any interference of the dealer and these shares are kept secret for using
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Symbols Description
K Secret
n Total number of Participants
Pi ith Participant
pi public identity of ith participant
D A trusted Dealer
t Total number of qualified subsets
d Number of particpants in each qualified subset
ß0 Monotone access structure
ßi ith qualified subset
p A large prime
r An integer
E Elliptic curve
G1 Additive group of points of an Elliptic curve EFp(a, b)
G Generator of G1

G2 Multiplicative subgroup of extension of finite field F∗p2
ê Modified Weil pairing
H Secure hash function
Xi Secret share of ith participant
Xij Secret share of ith participant in the jth qualified subset
Yi Pseudo share ith participant
Yij Pseudo share of ith participant in the jth qualified subset
r(x) Polynomial of degree one
zi Identity of ith qualified subset
X0 Dealer’s secret share
Y0 Dealer’s pseudo share

Table 3.1: Global parameters in the scheme

several times. Next, the complete procedure of the scheme is given.

The four important stages of the scheme are mentioned below:

1. Initialization of the scheme

2. Generation of shares

3. Distribution of secret

4. Verification and reconstruction of secret
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3.2.1 Initialization of the scheme

In the initialization phase some public parameters necessary for initializing the

scheme are posted on the bulletin board by the dealer so that they can be accessed

by every participant P1, P2, P3, ..., Pn.

1. A trusted dealer D chooses an elliptic curve E over GF (q), where q = pr,

with p being a large prime such that DLP and ECDLP are hard in GF (q).

Let G1 be an additive cyclic group of the points of elliptic curve over Fp. Let

G2 be a multiplicative subgroup of an extension of finite field F∗p2 . To map

the elements of G1 to G2, elliptic curve pairing is used e.g. modified Weil

pairing (ê) [? ].

2. Let G a generator of G1 be chosen by the dealer and a hash function H is

defined to map H : G1 7→ {0, 1}`, where ` is the bit length of the field.

3. All these public parameters {E,G1, G2, q, G, ê, H} are published in the notice

board to access them for later stages.

3.2.2 Generation of shares

In the second stage, participants select their shares and send them to dealer. Dealer

first verifies the shares sent by participants and then each share is assigned to the

respective participant. Shares are then published in the public bulletin board.

1. Each participant Pi selects Xi at random in Z∗q as their secret share which

is not to be revealed and it must be kept secret to use for the reconstruction

of multiple secrets. Each participant then computes their pseudo share

Yi = XiG.

The pseudo shares are now used to reconstruct the secret. Each participant

Pi submits their pseudo share Yi to the dealer. Here, dealer has to make
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sure that all the pseudo shares are distinct so that no participant has a share

that some else participant also has. If dealer finds that two pseudo shares

are same then they request the participants to chose some other share. No

one can access the secret share of the participant because in order to obtain

it, ECDLP must be solved which is assumed a hard problem.

2. Each participant Pi’s pseudo share Yi is published on the bulletin board

along with the public identity pi that is chosen at random from Z∗q.

3.2.3 Distribution of secret

1. Let the secret K to be shared among n participants. Here, degree one

polynomial is only needed to be set up which reduces the computational

cost of this scheme as compared to many other schemes available in the

literature. Polynomial r(x) of degree one is as follows:

r(x) = K + cx, where c ∈ Z∗q

2. For giving the identity to each minimal qualified subset in ß0, the dealer

selects an integer z1, z2, ..., zt ∈ Z∗q at random.

3. Here, dealer also needs to add their part in secret sharing so that the scheme

can be made more secure. It will also help the combiner to easily verify

shares. To add some contributuion of dealer, a random number X0 ∈ Z∗q is

chosen to compute:

Y0 = X0G and Y ′i = X0Yi for i = 1, 2, ..., n.

4. Compute r(1) and for each qualified subset ßj = {P1j, P2j, ..., Pdj} in ß0, here

Pij means participant Pi in the jth subset, compute

Bj = r(zj)⊕H(Y
′

1j)⊕H(Y
′

2j)⊕ ...⊕H(Y
′

dj), 1 ≤ j ≤ t
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d is total number of participants in each qualified access set.

The purpose to compute r(1) is to enable the combiner to easily reconstruct

the secret. As we know that to compute a degree one polynomial, two points

must be required. Hence, r(1) will be made available on the bulletin board

and then in the Lagrange interpolation phase, it will be accessed from there

to reveal the secret.

5. Values of Y0, r(1), (z1, B1), (z2, B2), ..., (zt, Bt) are published on the public

bulletin board.

3.2.4 Verification and reconstruction of secret

There are t qualified subsets in the access structure ß0 and each qualified subset

ßj, 1 ≤ j ≤ t has the access to reconstruct the secret. Secret shares of the partic-

ipants and the publicly available values on the public bulletin board are used for

retrieving the secret. Combiner has also given the authority to verify the shares

and also identify cheaters.

1. Each participant Pij of the qualified subset ßj obtains Y0 from the public

bulletin board and use their secret share Xij to compute:

Y
′

ij = XijY0.

Then Y
′
ij is delivered to the designated combiner for obtaining the secret.

2. Before obtaining the secret, combiner first verifies the share using bilinear

pairing that is to check

ê(G, Y ′ij) = ê(Y0, Yij).

If this condition is satisfied then the participant has sent the valid share and

if it is not met then the corresponding participant is invalid and their share

can not be accepted and that is how an invalid share or an a intruder can

be identified.
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3. The combiner after receiving all the valid shares can retrieve

r(zj) = Bj ⊕H(Y
′

1j)⊕H(Y
′

2j)⊕ ...⊕H(Y
′

dj).

4. Lagrange interpolation can now be used to reconstruct the secret K = r(0)

using the values of r(1) and r(zj).

r(x) = r(1).
x− zj
1− zj

+ r(zj).
x− 1

zj − 1
.

or we may write it for r(0)

r(0) = r(1).
zj

zj − 1
+ r(zj).

1

1− zj
.

5. The shared secret K is reconstructed.

We now present a toy example that illustrates the working of the scheme and see

how does the secret is obtained.

Note that it is just a toy example that highlights the important functions of the

scheme for reconstructing the secret. In this example, we will not use a big prime

field just to make the computations easy but for practical purposes one must

use a big prime field to avoid any cheating from an unauthorized person. The

information about each step of each phase will be explained in the next example

unless otherwise stated.

Example 3.2.1. We fix the field Z13 and an elliptic curve E over it will be

defined in the initialization phase. The four phases of the scheme work for sharing

and reconstructing the secret are as follows:

A. Initialization of the scheme

A1. Let us suppose a trusted dealer (D) who chooses an elliptic curve

E : x3 + x+ 6 mod 13.
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A2. let us consider a generator G = (4, 10).

A3. Then, we have defined the following hash values for all the elliptic

curve points. Note that these hash values are assumed because our

main intention is to only show the working of the scheme. For proper

execution of the scheme, one can use any secure hash function and then

to keep the bit size in the given field, one can transform the output bit

string in it. Here, we have used Z13 whose bit size is 4 and therefore

the assumed hash values are taken of size 4 bits.

Point P (x, y) Hash value Point P (x, y) Hash value
(2, 4) 0000 (4, 3) 1001
(2, 9) 1011 (4, 10) 0001
(3, 6) 1010 (9, 4) 0101
(3, 7) 1010 (9, 9) 0010
(11, 3) 1011 (12, 2) 1011
(11, 10) 0111 (12, 11) 0111

Table 3.2: Hash values of elliptic curve points

B. Generation of shares

Let the number of participants be 6 and the integers selected by partic-

ipants P1, P2, P3, P4, P5, P6 as their secret share are 1, 4, 5, 8, 10, 12 respec-

tively. Then each participant computes the pseudo share from the secret

share as Yi = XiG:

Y1 = 1(4, 10) = (4, 10) = 0001

Y2 = 4(4, 10) = (9, 9) = 0010

Y3 = 5(4, 10) = (12, 2) = 1011

Y4 = 8(4, 10) = (12, 11) = 0111

Y5 = 10(4, 10) = (3, 7) = 1011

Y6 = 12(4, 10) = (4, 3) = 1001.
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These pseudo shares play important role in the scheme for revealing K. They

also keep the secret shares hidden.

C. Distribution of secret

C1. Let 7 be a secret to be shared. Dealer sets up a polynomial f(x) of

degree 1.

i.e.; f(x) = 7 + 2x mod 13

C2. Here, if we let the number of partcipants must contribute to reveal the

secret be 4 and let the qualified set be ß1 = {Y1, Y2, Y3, Y4} then an

integer a1 = 5 is chosen to represent ß1.

C3. Dealer also adds some contribution of them to make the scheme more

secure. Here is given the dealer’s part.

Let X0 = 6 be chosen as dealer secret share. Now, compute dealer’s

pseudo share by Y0 = X0G also Y
′
i = X0Yi for i = 1, 2, 3, 4, 5, 6. The

following values are obatianed then

Y0 = 6(4, 10) = (11, 10)

Y
′

1 = 6(4, 10) = (11, 10)

Y
′

2 = 6(9, 9) = (2, 9)

Y
′

3 = 6(12, 2) = (9, 9)

Y
′

4 = 6(12, 11) = (9, 4)

Y
′

5 = 6(3, 7) = (12, 11)

Y
′

6 = 6(4, 3) = (11, 3).

C4. Compute f(1) = 7 + 2(1) mod 13 = 9 = 1001.

and,

A1 = f(a1)⊕H(Y
′

1 )⊕H(Y
′

2 )⊕H(Y
′

3 ⊕H(Y
′

4 )

= f(5)⊕H(11, 10)⊕H(2, 9)⊕H(9, 9)⊕H(9, 4)

= 0100⊕ 1110⊕ 1000⊕ 0010⊕ 0101

A1 = 0101 = 5.
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C5. Publish Y0 = (11, 10), f(1) = 5, (a1, A1) = (5, 5) on the public bulletin.

D. Verification and reconstruction of secret

D1. Each participant Pi in the qualified subset ß1 can access Y0 from the

bulletin board and computes Y
′
i = Y0Xi, using the secret share Xi. The

participant then delivers Y
′
i to the designated combiner. The combiner

first verifies the shares using bilinear pairing e.g. modified weil pairing.

We do not need to compute modified weil pairing manually. Thanks to

Miller’s algorithm who does this job for us (for Miller’s algorithm see

[25]). If the shares received are valid then proceeds further. Here, we

suppose that the received shares are valid.

D2. Once all the valid shares are received, the combiner can retrieve

f(a1) = A1 ⊕H(Y
′

1 )⊕H(Y
′

2 )⊕H(Y
′

3 )⊕H(Y
′

4 )

f(5) = 0101⊕ 1110⊕ 1000⊕ 0010⊕ 0101

f(5) = 0100 = 4.

D3. Using f(1) and f(5), the polynomial can be reconstructed using the

Lagrange Interpolation. The inverses of the numnbers are computed

using Algorithm 2.3.10.

f(x) = f(1).
x− 5

1− 5
+ f(5).

x− 1

5− 1

= 9.
x− 5

−4
+ 4.

x− 1

4

= −9× (x− 5)× 4−1 + 4× x− 1× 4−1 mod 13

= −9× (x− 5)× 10 + 4× x− 1× 10 mod 13

f(x) = −90× (x− 5) + (x− 1) mod 13.
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D4. The shared secret K is f(0).

f(0) = −90× (−5)− 1 mod 13

f(0) = −90× (−5)− 1 mod 13

f(0) = 449 mod 13

f(0) = 7 = K.

3.3 Security analysis of the scheme

Secret sharing scheme highly depends on the distribution of shares to the partici-

pants securely. If the shares are not being distributed securely to the participants

then the secret sharing scheme is not secure and can have an attack on it and as a

result secret can be gone into the wrong hands. This can be a disastrous situation

in cryptography because protection of the secret is the only thing for which all

this setup is made. In traditional secret sharing schemes, dealer selects the shares

for the participants. If, in case, a dealer is not a trustworthy then we can always

expect to have inconsistent shares which make the scheme weak in terms of its

security. But, thanks to verifiable secret sharing schemes which allow us to verify

that the shares are consistent. This intuitively means that each authorized set of

participants will construct the same secret when the participants in authorized set

combine their shares.

Strong security in share distribution phase

In this scheme the participants are totally made free from the intervention of

the dealer in selecting the shares. Choosing a share for themselves allows the

participants to use their secret share multiple times and that is how the problem

of choosing a new share every time to reconstruct a secret has been avoided.

Since each participant’s actual share/ secret share does not participate in the
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reconstruction phase rather it is being used at back end to produce pseudo share

which then actually takes part to reconstruct the secret. Finding actual share/

secret share of the participant from pseudo share is equivalent to solve ECDLP.

Anybody cannot calculate secret share from pseudo share because of ECDLP and

cannot guess any thing about the secret share.

Role of ECDLP and bilinear pairing in secret reconstruction

phase

In the reconstruction phase, dealer can also verify the shares of every participants

taking part in the reconstruction of the secret by their pseudo shares. Again,

security of X0 depends on ECDLP as Y0 cannot reveal any information about X0.

Only the birthday paradox method solves the ECDLP but it has a limit and once

that limit is exceeded this method also fails to solve ECDLP. Birthday paradox [11]

method running time is O(n), where n is the order of the group. Using a field of

160 bits allows to avoid this attack. Here, one can observe the difference between

DLP and ECDLP as DLP requires a field of 1024 bits to avoid the attack of sub

exponential algorithm [8]. Hence, elliptic curve is more suitable for providing a

better security with less number of bits. As a result it saves the time as well as

the space. Bilinear pairing in the reconstruction phase has a great importance in

the scheme since it allows combiner to check the validity of participant share. For

computation of Weil pairing, Miller has made an algorithm that is given in [25]

and its complexity is only polynomial time.

Theorem 3.3.1. In the reconstruction phase of a secret, probability of dis-

tributing invalid shares from the participant is negligible.

Proof. As we already have a lot of discussion on verification of shares by the

combiner in the verification phase. Now, it is time to prove that how does the

equation ê(G, Y ′ij) = ê(Y0, Yij) make sure that the shares sent by the participants

are valid. Here, we will make use of properties of bilinear pairing to prove the
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theorem.

ê(G, Y ′ij) = ê(Y0, Yij)

ê(G,XijY0) = ê(Y0, Yij) ∵ Y ′ij = XijY0

ê(G,XijY0) = ê(X0G,XijG) ∵ Y0 = X0G and Yij = XijG

ê(G,XijX0G) = ê(X0G,XijG) ∵ Y0 = X0G

ê(G,G)X0Xij = ê(G,G)X0Xij

It is now clear from the above proof that if the share initially sent by the participant

and the share later sent for the reconstruction do no match then the participant is

a cheater. As the scheme is based on Shamir’s secret sharing scheme which allows

only authorized participants to reconstruct the secret so any unauthorized set of

participants can not obtain the secret because they are not eligible to full fill the

criteria of recovering the secret. But, there is no hard mathematical problem on

which Shamir’s scheme is based whereas the proposed scheme depends on ECDLP.

Moreover, the degree one polynomial is just needed to be constructed unlike other

schemes which use (t−1) degree polynomial. This also reduced the computational

complexity since only two points are required to reconstruct the polynomial, one

point r(1) is displayed on the notice board and the other point r(bj) can only be

obtained when only authorized participants pool their shares together. Therefore,

any information for secret K cannot be obtained by the participant who is not in

the access structure or any unauthorized set cannot retrieve the secret value K.

The computational cost of Lagrange interpolation is O(nlog2n). There are only

four multiplication and an inverse computation required to reconstruct the degree

one polynomial.
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Parameters for multiple secrets

Further, the scheme can also be used to share several secrets. Let K1, K2, ..., Km be

the multiple secrets to be shared then for each secretKi there must be a polynomial

ri(x) that reveals the corresponding secret value Ki. For multiple secret, public

parameters on the bulletin board get the form as r(1)i, Y0i and Bji, 1 ≤ i ≤ m

along with some other parameters related to the particular secret. It is now clear

that participant’s share does not change for sharing multiple secret only more

public parameters are needed. But, if a participant feels like having an insecure

share then they can change their secret share by just sending a new pseudo share

to the dealer. Once the new pseudo share is received, the dealer update it on the

bulletin board and it does not affect others participants secret shadow. We also

discuss a case when a new participant is added in the system. A new participant

does not affect the shares of other participants and all the work dealer has to do

on the bulletin board is in access structure and the public parameters. There is

no secret communication happened between dealer and participants so there is no

need to have a secure channel in the share distribution phase.

Computational cost of the scheme

Computational cost of the proposed scheme is also low. We are now going to set

some notations to denote the time taken for the execution of each operation used

in the scheme. Let n be the total number of participants and d be the number

of participants in each qualified set. Let TECPA defines the time consumed for

the ‘n’ addition of a point X of a elliptic curve, TBP defines the time taken for

the execution of bilinear pairing, THASH is defined to show the time consumed for

hash function H and time taken for polynomial reconstruction is defined by TR.

To initialize the scheme, each participant and dealer compute their pseudo share.

To compute the pseudo share, everyone has to use his secret share along with the

generator of an elliptic curve addictive group. This takes (n+ 1) point multiplica-

tions and the computational cost for it is (n+ 1)TECPA. The dealer has to apply
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the hash function on the pseudo share of each participant and its computational

cost is just dTHASH . So, O((n+1)TECPA+dTHASH) is the total cost for the execu-

tion of initialization and share distribution phase. In the final stage of the scheme

where combiner verifies the shares and then reconstruct the secret, first, d partici-

pants in the authorized sets send their shares to the combiner by just doing a point

multiplication. Its computational cost is dTECPA. The combiner then applies the

hash function on the received shares which has a computational cost of dTHASH .

Dealer only has to do two pairing operations for verifying the shares and that takes

computational cost of 2TBP and finally using the Lagrange interpolation, secret is

revealed. This is achieved by TR computational cost. So, the computational cost

for the final stage is dTECPA + dTHASH + 2TBP + TR .Hence, the computational

cost for overall scheme is O(((n + 1) + d)TECPA + 2dTHASH + 2TBP + TR). The

XOR operation and polynomial evaluation do not cost much and hence ignored in

the computational cost.

3.4 Summary

This chapter explains the scheme of A. Sreekumar and V.P. Binu [2] which was

proposed in 2017. It is a secure and efficient secret sharing scheme which is based

on elliptic curve and pairing. Elliptic curve is used in the scheme to reduce the

computations and because of its good security property. The scheme does not

rely on the dealer for collecting the shares and hence participants are made free in

choosing their shares. Degree one polynomial has also reduced the computations

without compromising the security of secret sharing. Bilinear pairing sets up a

platform for the combiner to verify the shares for reconstruction of the secret. In

the end, we discussed the security of the scheme and analyzed its computational

cost for evaluating each phase. Overall, it is good secret sharing scheme that

provides a good security to a secret message.



Chapter 4

Modification for improving the

security of the proposed scheme

In this chapter, we are going to look into some weak points related to the security

of the proposed scheme [2] and then try to tackle them. The strong points with

respect to the security of the scheme have been mentioned in Chapter 3. Taking

those points into account and proposing some security related improvements, we

try to improve the security. At the end of this chapter concluding remarks to wrap

up the scheme are also mentioned.

4.1 Security loopholes

In the previous chapter, we explained a scheme [2] that is based on elliptic curve

and pairing. We also discussed the security of the scheme and observed that how

did it improve the security and computational complexity. Many secret sharing

schemes in the literature have a problem in the share distribution stage where

dealer distributes the share to participants but then to tackle this difficulty, a

scheme [20] based on finite field and DLP is proposed that allowed participants to

choose their shares without any dealer dependent procedure. This step improved

the security of the share distribution phase and the same share can further be used

54
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for retrieving many secrets without compromising the security. Many researcher

have also worked to improve the security of the reconstruction phase when partic-

ipants submit their shares to the combiner there was a great risk that a cheater

or an attacker sends a fake share to the combiner in order to cheat or to attack

the secret. The idea of bilinear pairing is then used to overcome this problem so

that a combiner can verify the shares of the participants and avoid any chance of

cheating. Remember, it all started when Shamir proposed a scheme to share a

secret but since then we have been in a state of improving the scheme more and

more so that it could be made more secure and efficient to implement. We have

seen some improvements in the share distribution phase and share reconstruction

phase. Over the years, researchers have also worked to reduce the computational

cost and complexity of secret sharing schemes. Now, we are going to look into a

couple of points in the proposed scheme [2] where there is still a chance for at-

tackers to deceive the participants and combiner and we know that if an attacker

successfully deceives them then our secret will no longer be secured. We analyzed

the following security loop-holes in the scheme:

1. In the reconstruction phase of Section 3.2.4 when participants deliver Y ′ij to

combiner there can be an intruder, who sits between combiner and partic-

ipants to get Y ′ij’s from participants and if an attacker successfully collects

all the Y ′ij’s then it will be just a piece of cake for him to obtain the secret.

As Shamir’s secret sharing scheme says; when sufficient number of shares

are combined, secret is revealed. This problem occurs because participant

cannot authenticate the combiner and hence the attacker can get the benefit

of it.

2. There is another problem in the reconstruction phase of Section 3.2.4 that

is the scheme does not allow participants to verify that the secret K given

back to them from the combiner after the reconstruction was the actual one.

By actual secret, we mean the secret which was initially distributed by the

dealer that is K. To make our claim more strong we denote the secret to

be shared by K and the recovered secret by K ′. Now, suppose the complete
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scheme works smoothly and combiner in the reconstruction phase retrieves

the secret K ′ and reveals it. There might be a dishonest combiner who does

not give the actual secret K back after its reconstruction because there is no

criterion set in the scheme which verifies that the recovered secret K ′ and K

are same. This can also lead to a serious problem in secret sharing scheme

where we are not getting the actual secret K instead getting a fake/wrong

secret.

There must be set some criteria which help to improve the scheme. Participants

must be able to authenticate combiner in order to deliver Y ′ij’s to the right com-

biner otherwise the scheme is not secure. There must also be a mechanism that

verifies that the reconstructed secret K ′ is correct and did not alter it after it is

reconstructed. The solutions to these problems are discussed in the next section.

4.2 Countermeasures

In this section, the weak points which we mentioned in the previous section are

going to be tackled. The first problem is in the reconstruction phase 3.2.4 where

participants can not authenticate the combiner. So an attacker can pretend to be

a combiner in order to cheat the participants and collect all the Y ′ij’s from them

to obtain the secret K. So, we have to find a way out of this issue and make the

scheme more secure. All the research in the past have been done to improve the

security as well as the computational cost of the scheme and if such points in the

reconstruction phase 3.2.4 of [2] will not be tackled then the security cannot be

improved and an attacker can take the benefit of it in order to know about the

secret K. Once the secret K is known to a person who is not intended to know

about it, there can be a huge disastrous occur for us. Now, we present a way out

of this problem.

Countermeasure 4.2.1.

We are going to use the idea of public key cryptography and see how does it

overcome the security loophole 1.
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Let the public key of the combiner be PKC and secret key of the combiner be

SKC . Let a secure asymmetric algorithm be E that uses public key PKC and

secret key SKC of the combiner to encrypt and decrypt the data respectively.

Then, the following steps can improve the security:

1. In share distribution phase 3.2.3 when the secret K is distributed. Dealer

D publishes the public key PKC of the combiner along with other public

parameters on the bulletin board.

2. Participants then use the public key PKC of the combiner available on the

bulletin board and algorithm EPKC
to send the encrypted EPKC

(Y ′ij) for

retrieving the secret K in the reconstruction phase 3.2.4.

3. When combiner receives the encrypted Yij he can decrypt it using his secret

key SKC via algorithm ESKC
.

4. When all the shares Y ′ij’s are received, combiner retrieves the secret K.

Basically, we use the idea of public key cryptography where publicly available

key of the recipient is used to encrypt a message. Once the encryption is done,

the ciphertext is sent to the recipient. Then the receiver can use his private key

to decrypt the message. Here, participants send Y ′ij using the public key of the

combiner PKC and algorithm E . Then the combiner can decrypt the received

information using his private key SKC and algorithm E to obtain Y ′ij and then

he can use these decrypted values to recover the secret K. The use of public key

cryptography avoids the use of private channel for the communication between

the participants and combiner. It also makes participants eligible to authenticate

the combiner. In the proposed scheme, participants deliver their shares to the

designated combiner via a secure channel but we implemented the idea of public

key cryptography to avoid the use of a secure channel. There can be cases where

use of secure channel is not possible so our counter-measure addresses the problem

of communication through a secure channel between combiner and participants.
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The second issue in the scheme occurs when a dishonest combiner does not give

participants original secret K. There is no criterion set in this scheme which

enables participants to confirm that the secret after its reconstruction is returned

in its original form. It is very natural to have a dishonest combiner who cheats

with participants. To make the scheme more secure and avoid any dishonesty from

the combiner following improvement is made:

Countermeasure 4.2.2.

A secure function can be used here to check the validity of the reconstructed secret

K ′. The following steps are included:

1. In the secret distribution phase 3.2.3, dealer D applies a secure hash function

H on the secret and publish the hash value H(K) of the secret K on the

public notice board. This will not affect the security of the secret K.

2. Once the combiner recovers the secret K, anyone who knows the recovered

secret K ′ can now check its validity by just applying hash function on it.

3. If the hash value of the recovered secret K ′ matches the previously available

hash value of the secret K then the secret revealed by the combiner is correct

else the combiner is trying to cheat by showing a fake secret. Participants

just need to check

H(K) = H(K ′).

If the above equation does not hold then the recovered secret is fake.

This step does not allow a dishonest combiner to cheat with participants and

also helps the scheme to run smoothly. Note that, there must be used a collision

resistant hash function e.g. SHA-512 [12]. It can now be publicly verified whether

the recovered secret K ′ displayed is original or fake.

Overall, from the initialization of the scheme to the reconstruction of the secret, the

scheme has become more secure. The security of the scheme mainly depends on the

hard problem of ECDLP. The use of a secure channel for communication between

combiner and participants is avoided using the idea of public key cryptography.
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Moreover, the scheme is now more practical as the participants can now verify

the recovered secret. Our counter-measures address the available loopholes in the

scheme and improves the security of the scheme.

4.3 Concluding remarks

In this thesis we thoroughly revised the proposed scheme [2] and figured out a

couple of security loopholes in Section 4.1. We then overcome these difficulties in

Section 4.2. The following concluding remarks wrap up the revised scheme and

shows the important characteristics of it.

• It is a multi secret sharing scheme where a same share can be used to recon-

struct several secrets.

• Participants do not depend on dealer for their secret shares. They choose

their secret shares themselves.

• First degree polynomial reduces the computational complexity.

• Bilinear pairing helps the combiner to check the validity of secret shares of

participants and avoids being deceived by an intruder or participants.

• Publishing public key of the combiner on the public bulletin board avoids

the use of a secure channel and also helps them to check the authenticity of

the combiner.

• Publishing hash value of the secret on the public bulletin board helps par-

ticipants to verify the reconstructed secret.

The revised scheme is more secure as the use of public key cryptography and a

secure hash function H do not require the scheme to rely on any secret channel and

verification of the secret can also be done efficiently. All the previously mentioned

parameters will be retained on the public bulletin board along with public key

PKC and H(K), and no one can cheat participants now.
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